首页> 外文OA文献 >Microstructure and mechanical properties at different length scales and strain rates of nanocrystalline tantalum produced by high-pressure torsion
【2h】

Microstructure and mechanical properties at different length scales and strain rates of nanocrystalline tantalum produced by high-pressure torsion

机译:高压扭转制备纳米晶钽的不同长度尺度和应变速率的组织和力学性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fully dense, nanocrystalline tantalum (average grain size as small as ~40 nm) has been processed for the first time by high-pressure torsion. High-resolution transmission electron microscopy reveals non-equilibrium grain boundaries and grains decorated with high-density dislocations. Microhardness measurements and instrumented nanoindentation experiments indicate that the mechanical property is quite uniform except for the central area of the disks. Nanoindentation experiments at different strain rates suggest that the strain rate sensitivity of nanocrystalline tantalum is increased compared to the coarse- and ultrafine-grained counterparts and is accompanied by an activation energy of the order of a few ~b3 (b is the magnitude of the dislocation Burgers vector), implying a shift in the plastic deformation mechanism from the screw dislocation dominated regime. We thus infer the plastic deformation mechanisms of nanocrystalline body-centered cubic (bcc) and face-centered cubic metals converge. To examine the stress–strain behavior, we have used microcompression to measure the compressive stress–strain curves on microscale pillars fabricated by focused ion beam technique. Yield strength as high as 1.6 GPa has been observed. High-strain rate behavior has been investigated using a miniature Kolsky bar system. We have found that at high-strain rates the nanocrystalline tantalum specimens exhibit adiabatic shear banding, a dynamic plastic deformation mode common to many ultrafine-grained and all nanocrystalline bcc metals.
机译:首次通过高压扭力加工了完全致密的纳米晶钽(平均晶粒尺寸小至约40 nm)。高分辨率透射电子显微镜显示不平衡的晶界和装饰有高密度位错的晶粒。显微硬度测量和仪器化的纳米压痕实验表明,除磁盘中心区域外,机械性能非常均匀。在不同应变速率下的纳米压痕实验表明,与粗晶粒和超细晶粒的钽晶体相比,纳米晶钽的应变速率敏感性有所提高,并伴随着约〜b3的活化能(b是位错的大小Burgers向量),这意味着塑性变形机制从螺杆位错为主的状态发生了转变。因此,我们推断出以纳米晶体为中心的立方(bcc)和以面为中心的立方金属融合的塑性变形机制。为了检查应力-应变行为,我们使用了微压缩来测量通过聚焦离子束技术制造的微尺度柱上的压缩应力-应变曲线。已经观察到屈服强度高达1.6GPa。使用微型Kolsky钢筋系统已经研究了高应变速率行为。我们发现,在高应变速率下,纳米晶钽样品表现出绝热剪切带,这是许多超细晶粒和所有纳米晶bcc金属所共有的动态塑性变形模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号